L. Abbott and F. S. Chance, Drivers and modulators from push-pull and balanced synaptic input, Progress in brain research, vol.149, pp.147-155, 2005.

A. Alemi, C. Baldassi, N. Brunel, and R. Zecchina, A three-threshold learning rule approaches the maximal capacity of recurrent neural networks, PLoS computational biology, vol.11, issue.8, 2015.

F. G. Ashby and W. T. Maddox, Human category learning, Annu. Rev. Psychol, vol.56, pp.149-178, 2005.

J. M. Beck, W. J. Ma, R. Kiani, T. Hanks, A. K. Churchland et al., Probabilistic population codes for bayesian decision making, Neuron, vol.60, issue.6, pp.1142-1152, 2008.

T. E. Behrens, M. W. Woolrich, M. E. Walton, and M. F. Rushworth, Learning the value of information in an uncertain world, Nature neuroscience, vol.10, issue.9, pp.1214-1221, 2007.

K. Berlemont and J. Nadal, Perceptual decision-making: Biases in post-error reaction times explained by attractor network dynamics, Journal of Neuroscience, vol.39, issue.5, pp.833-853, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01718366

K. Berlemont, J. Martin, J. Sackur, and J. Nadal, Does nonlinear neural network dynamics explain human confidence in a sequence of perceptual decisions?, BioRxiv, p.648022, 2019.

K. Berlemont, J. Martin, J. Sackur, and J. Nadal, Nonlinear neural network dynamics accounts for human confidence in a sequence of perceptual decisions, Scientific reports, vol.10, issue.1, pp.1-16, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02138028

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to numerical computing, SIAM review, vol.59, issue.1, pp.65-98, 2017.

R. Bogacz, E. Brown, J. Moehlis, P. Holmes, and J. D. Cohen, The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks, Psychological review, vol.113, issue.4, p.700, 2006.

L. Bonnasse-gahot and J. Nadal, Neural coding of categories: information efficiency and optimal population codes, Journal of computational neuroscience, vol.25, issue.1, pp.169-187, 2008.

L. Bonnasse-gahot and J. Nadal, Perception of categories: from coding efficiency to reaction times, Brain Research, vol.1434, pp.47-61, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00569013

J. A. Cromer, J. E. Roy, and E. K. Miller, Representation of multiple, Neuron, vol.66, issue.5, pp.796-807, 2010.

J. Drugowitsch, A. G. Mendonça, Z. F. Mainen, and A. Pouget, Learning optimal decisions with confidence, Proceedings of the National Academy of Sciences, vol.116, pp.24872-24880, 2019.

T. A. Engel, W. Chaisangmongkon, D. J. Freedman, and X. Wang, Choice-correlated activity fluctuations underlie learning of neuronal category representation, Nature communications, vol.6, issue.1, pp.1-12, 2015.

A. Fanini and J. A. Assad, Direction selectivity of neurons in the macaque lateral intraparietal area, Journal of neurophysiology, vol.101, issue.1, pp.289-305, 2009.

J. K. Fitzgerald, D. J. Freedman, and J. A. Assad, Generalized associative representations in parietal cortex, Nature neuroscience, vol.14, issue.8, p.1075, 2011.

D. J. Freedman and J. A. Assad, Experience-dependent representation of visual categories in parietal cortex, Nature, vol.443, issue.7107, pp.85-88, 2006.

J. B. Fritz, S. V. David, S. Radtke-schuller, P. Yin, and S. A. Shamma, Adaptive, behaviorally gated, persistent encoding of task-relevant auditory information in ferret frontal cortex, Nature neuroscience, vol.13, issue.8, p.1011, 2010.

D. Ganguli and E. P. Simoncelli, Efficient sensory encoding and bayesian inference with heterogeneous neural populations, Neural computation, vol.26, issue.10, pp.2103-2134, 2014.

W. Gerstner, M. Lehmann, V. Liakoni, D. Corneil, and J. Brea, Eligibility traces and plasticity on behavioral time scales: experimental support of neohebbian three-factor learning rules, Frontiers in neural circuits, vol.12, p.53, 2018.

R. L. Goldstone, Influences of categorization on perceptual discrimination, Journal of Experimental Psychology: General, vol.123, issue.2, p.178, 1994.

I. Guyon, N. Matic, and V. Vapnik, Discovering informative patterns and data cleaning, 1996.

S. Harnad, Categorical perception, 2003.

D. O. Hebb, The organization of behavior: a neuropsychological theory

;. R. Chapman-&-hall, N. D. Herbrich, M. Lawrence, and . Seeger, Fast sparse gaussian process methods: The informative vector machine, Advances in neural information processing systems, pp.625-632, 1949.

S. A. Hillyard, K. C. Squires, J. W. Bauer, and P. H. Lindsay, Evoked potential correlates of auditory signal detection, Science, vol.172, issue.3990, pp.1357-1360, 1971.

J. Jaramillo, J. F. Mejias, and X. Wang, Engagement of pulvino-cortical feedforward and feedback pathways in cognitive computations, Neuron, vol.101, issue.2, pp.321-336, 2019.

M. Jepma, P. R. Murphy, M. R. Nassar, M. Rangel-gomez, M. Meeter et al., Catecholaminergic regulation of learning rate in a dynamic environment, PLoS computational biology, vol.12, issue.10, 2016.

K. Köver, Y. L. Gill, S. Tseng, and . Bao, Perceptual and neuronal boundary learned from higher-order stimulus probabilities, Journal of Neuroscience, vol.33, issue.8, pp.3699-3705, 2013.

W. Krauth and M. Mézard, Learning algorithms with optimal stability in neural networks, Journal of Physics A: Mathematical and General, vol.20, issue.11, p.745, 1987.

A. Lak, M. Okun, M. M. Moss, H. Gurnani, K. Farrell et al., Dopaminergic and prefrontal basis of learning from sensory confidence and reward value, Neuron, vol.105, issue.4, pp.700-711, 2020.

C. Law and J. I. Gold, Reinforcement learning can account for associative and perceptual learning on a visual-decision task, Nature neuroscience, vol.12, issue.5, p.655, 2009.

D. Lawrence and J. C. Platt, Learning to learn with the informative vector machine, Proceedings of the twenty-first international conference on Machine learning, p.65, 2004.

R. Legenstein, D. Pecevski, and W. Maass, A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback, PLoS computational biology, vol.4, issue.10, 2008.

R. Legenstein, S. M. Chase, A. B. Schwartz, and W. Maass, A reward-modulated hebbian learning rule can explain experimentally observed network reorganization in a brain control task, Journal of Neuroscience, vol.30, issue.25, pp.8400-8410, 2010.

Y. Loewenstein and H. S. Seung, Operant matching is a generic outcome of synaptic plasticity based on the covariance between reward and neural activity, Proceedings of the National Academy of Sciences, vol.103, issue.41, pp.15224-15229, 2006.

, The Mathworks, 2018.

F. Meyniel, Brain dynamics for confidence-weighted learning. bioRxiv, p.769315, 2019.

F. Meyniel and S. Dehaene, Brain networks for confidence weighting and hierarchical inference during probabilistic learning, Proceedings of the National Academy of Sciences, vol.114, issue.19, pp.3859-3868, 2017.

K. D. Miller and D. J. Mackay, The role of constraints in hebbian learning, Neural computation, vol.6, issue.1, pp.100-126, 1994.

D. P. Min, A. Bliss, D. J. Sarma, X. Freedman, and . Wang, A neural circuit mechanism of categorical perception: top-down signaling in the primate cortex. bioRxiv, 2020.

M. R. Nassar, R. C. Wilson, B. Heasly, and J. I. Gold, An approximately bayesian delta-rule model explains the dynamics of belief updating in a changing environment, Journal of Neuroscience, vol.30, issue.37, pp.12366-12378, 2010.

M. R. Nassar, R. Bruckner, and M. J. Frank, Statistical context dictates the relationship between feedback-related eeg signals and learning. eLife, vol.8, 2019.

. Ratcliff, A theory of memory retrieval, Psychological review, vol.85, issue.2, p.59, 1978.

P. Schultz, P. R. Dayan, and . Montague, A neural substrate of prediction and reward, Science, vol.275, issue.5306, pp.1593-1599, 1997.

N. Sigala and N. K. Logothetis, Visual categorization shapes feature selectivity in the primate temporal cortex, Nature, vol.415, issue.6869, pp.318-320, 2002.

C. Summerfield and F. P. De-lange, Expectation in perceptual decision making: neural and computational mechanisms, Nature Reviews Neuroscience, vol.15, issue.11, pp.745-756, 2014.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, 2018.

I. Tajima, S. Tajima, K. Koida, H. Komatsu, K. Aihara et al., Population code dynamics in categorical perception, Scientific reports, vol.6, p.22536, 2016.

K. Tajima, C. I. Koida, H. Tajima, K. Suzuki, H. Aihara et al., Task-dependent recurrent dynamics in visual cortex. eLife, vol.6, p.26868, 2017.