F. Debes, E. Budtz-jørgensen, P. Weihe, R. F. White, and P. Grandjean, Impact of prenatal methylmercury toxicity on neurobehavioral function at age 14 years, Neurotoxicol. Teratol, vol.28, pp.363-375, 2006.

G. J. Myers, S. W. Thurston, A. T. Pearson, P. W. Davidson, C. Cox et al., Postnatal exposure to methyl mercury from fish consumption: A review and new data from the Seychelles Child Development Study, Neurotoxicology, vol.30, pp.338-349, 2009.

S. Cordier, M. Garel, L. Mandereau, H. Morcel, P. Doineau et al., Amiel-Tison, C. Neurodevelopmental investigations among methylmercury-exposed children in French Guiana, Environ. Res, vol.89, pp.1-11, 2002.

C. Chevrier, K. Sullivan, R. F. White, C. Comtois, S. Cordier et al., Qualitative assessment of visuospatial errors in mercury-exposed Amazonian children, Neurotoxicology, vol.30, pp.37-46, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00504066

E. C. Santos, I. M. De-jesus, V. M. De-câmara, E. Brabo, E. C. Loureiro et al., Mercury exposure in Munduruku Indians from the community of Sai Cinza, State of Pará, Brazil. Environ. Res, vol.90, pp.98-103, 2002.

E. C. Santos, I. M. Jesus, E. S. Brabo, E. C. Loureiro, A. F. Mascarenhas et al., Mercury exposures in riverside Amazon communities in Pará, Brazil. Environ. Res, vol.84, pp.100-107, 2000.

J. Dolbec, D. Mergler, C. J. Sousa-passos, S. Sousa-de-morais, and J. Lebel, Methylmercury exposure affects motor performance of a riverine population of the Tapajós river, Brazilian Amazon, Int. Arch. Occup. Environ. Health, vol.73, pp.195-203, 2000.

P. Grandjean, R. F. White, A. Nielsen, D. Cleary, and E. C. De-oliveira-santos, Methylmercury neurotoxicity in Amazonian children downstream from gold mining, Environ. Health Perspect, vol.107, pp.587-591, 1999.

J. Lebel, D. Mergler, M. Lucotte, M. Amorim, J. Dolbec et al., Evidence of early nervous system dysfunction in Amazonian populations exposed to low levels of methylmercury, Neurotoxicology, vol.17, pp.157-167, 1996.

J. Lebel, D. Mergler, F. Branches, M. Lucotte, M. Amorim et al., Neurotoxic effects of low-level methylmercury contamination in the Amazonian Basin, Environ. Res, vol.79, pp.20-32, 1998.

N. Fréry, R. Maury-brachet, E. Maillot, M. Deheeger, B. De-merona et al., Gold-mining activities and mercury contamination of native amerindian communities in French Guiana: Key role of fish in dietary uptake, Environ. Health Perspect, vol.109, pp.449-456, 2001.

J. P. Bourdineaud, N. Bellance, G. Bénard, D. Brèthes, M. Fujimura et al., Feeding mice with diets containing mercury-contaminated fish flesh from French Guiana: A model for the mercurial intoxication of the Wayana Amerindians, Environ. Health, vol.7, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00342502

M. Aschner, T. Syversen, D. O. Souza, J. B. Rocha, and M. Farina, Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity, Braz. J. Med. Biol. Res, vol.40, pp.285-291, 2007.

C. Abbadie, Chemokines, chemokine receptors and pain, Trends Immunol, vol.26, pp.529-534, 2005.

W. Rostene, P. Kitabgi, and S. M. Parsadaniantz, Chemokines: A new class of neuromodulator?, Nat. Rev. Neurosci, vol.8, pp.895-903, 2007.

D. Godefroy, R. D. Gosselin, A. Yasutake, M. Fujimura, C. Combadière et al., Protection by the chemokine CCL2 of the neurotoxic effect of methylmercury, Toxicol. Sci, vol.125, pp.209-218, 2012.

A. Boudou, R. Maury-brachet, M. Coquery, G. Durrieu, and D. Cossa, Synergic effect of gold mining and damming on mercury contamination in fish, Environ. Sci. Technol, vol.39, pp.2448-2454, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00909882

G. Durrieu, R. Maury-brachet, and A. Boudou, Goldmining and mercury contamination of the piscivorous fish Hoplias aimara in French Guiana (Amazon basin), Ecotoxicol. Environ. Saf, vol.60, pp.315-323, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00909825

B. Lu, B. J. Rutledge, L. Gu, J. Fiorillo, N. W. Lukacs et al., Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice, J. Exp. Med, vol.187, pp.601-608, 1998.

N. S. Bloom, Determination of picogram levels of methylmercury by aqueous phase ethylation, followed by cryogenic gas chromatography with cold vapor atomic fluorescence detection, Can. J. Fish Aquat. Sci, vol.46, pp.1131-1140, 1989.

A. Legeay, M. Achard-joris, M. Baudrimont, J. C. Massabuau, and J. P. Bourdineaud, Impact of cadmium contamination and oxygenation levels on biochemical responses in the Asiatic clam Corbicula fluminea, Aquat. Toxicol, vol.74, pp.242-253, 2005.

J. P. Bourdineaud, M. Fujimura, M. Laclau, M. Sawada, and A. Yasutake, Deleterious effects in mice of fish-associated methylmercury contained in a diet mimicking the Western populations' average fish consumption, Environ. Int, vol.37, pp.303-313, 2011.

G. Danscher and B. Møller-madsen, Silver amplification of mercury sulfide and selenide: A histochemical method for light and electron microscopic localization of mercury in tissue, J. Histochem. Cytochem, vol.33, pp.219-228, 1985.

M. Soto, M. P. Cajaraville, and I. Marigómez, Tissue and cell distribution of copper, zinc and cadmium in the mussel, Mytilus galloprovincialis, determined by autometallography, Tissue Cell, vol.28, pp.557-568, 1996.

M. H. Berntssen, K. Hylland, A. K. Lundebye, and K. Julshamn, Higher fecal excretion and lower tissue accumulation of mercury in Wistar rats from contaminated fish than from methylmercury chloride added to fish, Food Chem. Toxicol, vol.42, pp.1359-1366, 2004.

R. M. Ransohoff, Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology, Immunity, vol.31, pp.711-721, 2009.

E. Zamara, S. Galastri, S. Aleffi, I. Petrai, M. Aragno et al., Prevention of severe toxic liver injury and oxidative stress in MCP-1-deficient mice, J. Hepatol, vol.46, pp.230-238, 2007.

F. Heymann, C. Trautwein, and F. Tacke, Monocytes and macrophages as cellular targets in liver fibrosis, Inflamm. Allergy Drug Targets, vol.8, pp.307-318, 2009.

E. Seki, S. De-minicis, S. Inokuchi, K. Taura, K. Miyai et al., CCR2 promotes hepatic fibrosis in mice, Hepatology, vol.50, pp.185-197, 2009.

M. Dagouassat, N. Suffee, H. Hlawaty, O. Haddad, F. Charni et al., Monocyte chemoattractant protein-1 (MCP-1)/CCL2 secreted by hepatic myofibroblasts promotes migration and invasion of human hepatoma cells, Int. J. Cancer, vol.126, pp.1095-1108, 2010.
URL : https://hal.archives-ouvertes.fr/cea-02529147

A. E. Obstfeld, E. Sugaru, M. Thearle, A. M. Francisco, C. Gayet et al., CCR2 regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis, Diabetes, vol.59, pp.916-925, 2010.

Y. Tamura, M. Sugimoto, T. Murayama, M. Minami, Y. Nishikaze et al., chemokine receptor 2 inhibitor improves diet-induced development of insulin resistance and hepatic steatosis in mice, J. Atheroscler. Thromb, vol.17, pp.1-10, 2010.

C. W. Woo, Y. L. Siow, and O. Karmin, Homocysteine induces monocyte chemoattractant protein-1 expression in hepatocytes mediated via activator protein-1 activation, J. Biol. Chem, vol.283, pp.1282-1292, 2008.

H. Tamashiro, M. Arakaki, M. Futatsuka, and E. S. Lee, Methylmercury exposure and mortality in southern Japan: A close look at causes of death, J. Epidemiol. Community Health, vol.40, pp.181-185, 1986.

L. W. Chang, R. A. Ware, and P. A. Desnoyers, A histochemical study on some enzyme changes in the kidney, liver and brain after chronic mercury intoxication in the rat, Food Cosmet. Toxicol, vol.11, pp.283-286, 1973.

P. A. Desnoyers and L. W. Chang, Ultrastructural changes in the liver after chronic exposure to methylmercury, Environ. Res, vol.10, pp.59-75, 1975.

L. W. Chang and S. Yamaguchi, Ultrastructural changes in the liver after long-term diet of mercury-contaminated tuna, Environ. Res, vol.7, pp.133-148, 1974.

D. Grotto, J. Vicentini, J. P. Angeli, E. F. Latorraca, P. A. Monteiro et al., Evaluation of protective effects of fish oil against oxidative damage in rats exposed to methylmercury, Ecotoxicol. Environ. Saf, vol.74, pp.487-493, 2011.

H. R. Andersen and O. Andersen, Effects of dietary alpha-tocopherol and beta-carotene on lipid peroxidation induced by methyl mercuric chloride in mice, Pharmacol. Toxicol, vol.73, pp.192-201, 1993.

A. S. De-freitas, V. R. Funck, S. Rotta-mdos, D. Bohrer, V. Mörschbächer et al., Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice, Brain Res. Bull, vol.79, pp.77-84, 2009.

C. Wagner, J. H. Sudati, C. W. Nogueira, and J. B. Rocha, In vivo and in vitro inhibition of mice thioredoxin reductase by methylmercury, Biometals, vol.23, pp.1171-1177, 2010.

G. R. Barcelos, D. Grotto, J. M. Serpeloni, J. P. Angeli, B. A. Rocha et al., Protective properties of quercetin against DNA damage and oxidative stress induced by methylmercury in rats, Arch. Toxicol, vol.85, pp.1151-1157, 2011.

N. Mori, A. Yasutake, and K. Hirayama, Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity, Arch. Toxicol, vol.81, pp.769-776, 2007.

X. Jin, H. M. Chan, E. Lok, K. Kapal, M. Taylor et al., Dietary fats modulate methylmercury-mediated systemic oxidative stress and oxidative DNA damage in rats, Food Chem. Toxicol, vol.46, pp.1706-1720, 2008.

D. Desaulniers, G. H. Xiao, H. Lian, Y. L. Feng, J. Zhu et al., Effects of mixtures of polychlorinated biphenyls, methylmercury, and organochlorine pesticides on hepatic DNA methylation in prepubertal female Sprague-Dawley rats, Int. J. Toxicol, vol.28, pp.294-307, 2009.

R. Canuel, S. B. De-grosbois, M. Lucotte, L. Atikessé, C. Larose et al., New evidence on the effects of tea on mercury metabolism in humans, Arch. Environ. Occup. Health, vol.61, pp.232-238, 2006.

P. Martins-rde, C. Braga-hde, A. P. Da-silva, J. B. Dalmarco, A. F. De-bem et al., Synergistic neurotoxicity induced by methylmercury and quercetin in mice, Food Chem. Toxicol, vol.47, pp.645-649, 2009.

J. Liang, M. Inskip, D. Newhook, and C. Messier, Neurobehavioral effect of chronic and bolus doses of methylmercury following prenatal exposure in C57BL/6 weanling mice, Neurotoxicol. Teratol, vol.31, pp.372-381, 2009.

N. Sugawara, T. Ohba, K. Nakai, A. Kakita, T. Nakamura et al., Effects of perinatal coexposure to methylmercury and polychlorinated biphenyls on neurobehavioral development in mice, Arch. Toxicol, vol.82, pp.387-397, 2008.

M. Yoshida, N. Shimizu, M. Suzuki, C. Watanabe, M. Satoh et al., Emergence of delayed methylmercury toxicity after perinatal exposure in metallothionein-null and wild-type C57BL mice, Environ. Health Perspect, vol.116, pp.746-751, 2008.

N. Onishchenko, N. Karpova, F. Sabri, E. Castrén, and S. Ceccatelli, Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury, J. Neurochem, vol.106, pp.1378-1387, 2008.

C. F. Huang, C. J. Hsu, S. H. Liu, and S. Y. Lin-shiau, Neurotoxicological mechanism of methylmercury induced by low-dose and long-term exposure in mice: Oxidative stress and down-regulated Na+/K+-ATPase involved, Toxicol. Lett, vol.176, pp.188-197, 2008.

K. S. Montgomery, J. Mackey, K. Thuett, S. Ginestra, J. L. Bizon et al., Chronic, low-dose prenatal exposure to methylmercury impairs motor and mnemonic function in adult C57/B6 mice, Behav. Brain Res, pp.55-61, 2008.

L. Björkman, B. F. Lundekvam, T. Laegreid, B. I. Bertelsen, I. Morild et al., Mercury in human brain, blood, muscle and toenails in relation to exposure: an autopsy study, Environ. Health, vol.6, 2007.

L. Barregård, C. Svalander, A. Schütz, G. Westberg, G. Sällsten et al., Cadmium, mercury, and lead in kidney cortex of the general Swedish population: A study of biopsies from living kidney donors, Environ. Health Perspect, vol.107, pp.867-871, 1999.