Solving large tomographic linear systems: size reduction and error estimation - Université Nice Sophia Antipolis Accéder directement au contenu
Article Dans Une Revue Geophysical Journal International Année : 2014

Solving large tomographic linear systems: size reduction and error estimation

Sergey Voronin
  • Fonction : Auteur
Dylan Mikesell
  • Fonction : Auteur
Inna Slezak
  • Fonction : Auteur
Guust Nolet
  • Fonction : Auteur
  • PersonId : 752450
  • IdHAL : guust-nolet

Résumé

We present a new approach to reduce a sparse, linear system of equations associated with tomographic inverse problems. We begin by making a modification to the commonly used compressed sparse-row format, whereby our format is tailored to the sparse structure of finite-frequency (volume) sensitivity kernels in seismic tomography. Next, we cluster the sparse matrix rows to divide a large matrix into smaller subsets representing ray paths that are geographically close. Singular value decomposition of each subset allows us to project the data onto a subspace associated with the largest eigenvalues of the subset. After projection we reject those data that have a signal-to-noise ratio (SNR) below a chosen threshold. Clustering in this way assures that the sparse nature of the system is minimally affected by the projection. Moreover, our approach allows for a precise estimation of the noise affecting the data while also giving us the ability to identify outliers. We illustrate the method by reducing large matrices computed for global tomographic systems with cross-correlation body wave delays, as well as with surface wave phase velocity anomalies. For a massive matrix computed for 3.7 million Rayleigh wave phase velocity measurements, imposing a threshold of 1 for the SNR, we condensed the matrix size from 1103 to 63 Gbyte. For a global data set of multiple-frequency P wave delays from 60 well-distributed deep earthquakes we obtain a reduction to 5.9 per cent. This type of reduction allows one to avoid loss of information due to underparametrizing models. Alternatively, if data have to be rejected to fit the system into computer memory, it assures that the most important data are preserved.
Fichier principal
Vignette du fichier
ggu242.pdf (1.66 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02196103 , version 1 (17-06-2021)

Identifiants

Citer

Sergey Voronin, Dylan Mikesell, Inna Slezak, Guust Nolet. Solving large tomographic linear systems: size reduction and error estimation. Geophysical Journal International, 2014, 199 (1), pp.276-285. ⟨10.1093/gji/ggu242⟩. ⟨hal-02196103⟩
49 Consultations
17 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More